
Advanced QA training:

Test Analysis techniques and processes

Ondrej Tulach

Senior Quality Assurance Engineer, QA experience since 2010

What does this guy know about QA?

 Former Sysadmin tasked with hacking* and debugging obscure
Municipal and Education SW and networks

 Former PL/I Mainframe programmer, C#.NET developer

 Experience with QA since 2010

 Production support & testing → manual testing → automated testing
→ test analysis → system/safety/reliability analysis

 Experience with QA in Banking, Security, Database systems

 Defence aerospace hobbyist – and Aerospace has created QA as SoA

 Experience+Analytics+Aerospace QA+hacking = better QA for everyone

*hacking: 1) using for different than intended purpose, deployment; 2) improvized or crafty solution

What you think you know about QA is most likely wrong

„No one ever sits in front of a computer and accidentally compiles a working program, so

people know—intuitively and correctly—that programming must be hard.

By contrast, almost anyone can sit in front of a computer and stumble over bugs, so

people believe—intuitively and incorrectly—that testing must be easy!“

~Michael Bolton, DevelopSense

The „Titanics“ happening without Advanced QA
(A.K.A. „we have Unit tests“)

Bell 4ESS, outage of entire NYC AT&T network, 15. january 1990

 SW update for core AT&T switches

 If a switch reboots and sends 1st message,

other switches do an internal reset upon receipt

 If other switches received 2nd message while

undergoing that internal reset: crash

 Post-crash: automatic restart.

 Avalanching: each restarted sends 1st message,

then 2nd… Crashing others

 Recursive fault, all 114 core switches restarting

each 6 seconds!

 Whole 9 hours outage

 (Workaround: lower network throughput,

downgrade FW)

 Failure Mode testing && Integration testing

http://phworld.org/history/attcrash.htm

Therac-25, iradiation of patients, 1985-1987 (3 dead, more radiation sickness)

 Radiotherapy machine had 3 opmodes:

1. Low-energy iradiation with magnetically
deflected ray

2. Indirect iradiation of 100× higher energy with
mask inserted (for conversion to RTG radiation)

3. Light beam for aiming

 Therac-25 has replaced mechanical safeties
with SW

 Race conditions were not handled

– If operator selected mode 2) and fast-enough
switched to mode 1), the 100x power iradiation of
was selected yet the shield was removed

– If operator selected mode 3) and fast-enough
switched to mode 1) it irradiated one spot without
EM deflection, causing deep burns

 Static inspection; State transition testing

http://radonc.wikidot.com/radiation-accident-therac25

✓ ✓ ✗

Ariane 5G, flight 501 explosion, 4th june 1996 (370 milion USD loss)

 Defect: converting from 64b float to 16b sint;
Ariane5 values did not fit into 16b → overflow

 ADA language detects overflows, raises exception

 Error: code threw OPERAND_ERROR, SRI dumped
memoryon output

 Failure: the dump was interpreted as flight data!

 System interpreted the dump „flight data“ as
extreme path deviation; „corrected“ by full
control surfaces deflection and 20° turn

 Parallel PRI+BKP failure – hot backup, same toxic
data

 Aerodynamic forces broke the rocket in half

 And the code was useless dead-weight!

 FTA with CCF, Stress testing, Integ.T with FMT,
Boundary Values Testing A5G

http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html

MIM-104 Patriot, BMD failure, 25th feb 1991 (28 dead, 100 wounded)

 Patriot SW fault prevented shootdown of SCUD
attacking missile

 Patriot radar lost tracking due to faulty
calculation of distance to look for the target

 The radar distance-to-look calculation was
function of

– Target velocity

– Patriot systém clock (since system start)

 Defect: rounding error added offset
0,000000095d every tick (1/10 sek.)

 Consequence: radar distance-to-look value
shifted +7 meters each hour; LoM after 20 hrs

 The failing Patriot BMD was uptime for 100
hours, missed SCID, SCUD hit barracks

 Stress testing, Boundary values testing…
Challenging DEV assumptions!

G
A

O
/IM

TEC
-9

2
-2

6
, u

sed
 u

n
d

er fair-u
se

http://www-users.math.umn.edu/~arnold/disasters/patriot.html

Airbus 330-203, stall and LOV, 1th June 2009 (all 228 souls onboard dead)

 Aircrew stalled aircraft, crashed into sea

 Complementary causes: dangerous SW
implementation of crew alerts

 Issues between Design and SW implementation

1. FBW changes signalling

a) FBW in Normal Law (I) prevents Stall pilot input

b) FBW in Alternate Law (II) allows Stall pilot input

c) Transition between FBW laws (I) into (II) signalled by 1
beep, little LCD cross, little text outside field of view

2. Reversed „Stall“ alarm suppression

a) Stall alarm suppressed in low airspeed

b) Intention: during landing – but implicitly also during
extreme stall!

c) If pilot attempts recovery, airspeed increases → alarm
suppression deactivates → stall alarm activates
negative feedback

 FMEA and FTA of „Stall alarm“ subsystem false
positive and false negative

https://abcnews.go.com/International/
air-france-flight-447-investigation-pilots-properly-trained/
story?id=16503005

Boeing 737 MAX crashes

 New engines to compete with A320 Neo

 Engines too large to fit normally -> CG shift

 Flight handling change...

 Re-cert or sim training → $1M discount

 MCAS to „hide“ changed handling

 Only single AoA sensor → SPoF

 QA certified as non-full-authority

 MGMT changed to full authority, but no re-analysis!

 Boeing QA pushed to not report risks and defects

 Documentation of known failure of „AoA disagree alert“ SW was knowingly deferred for 3 years!

 346 people died in 2 crashes

 CANbus is the „spine“ of modern cars

 CAN commands can eg. Deactivate brakes via ABS

 Parking/Lane assist obeys CAN commands

 Any „online“ device connected to CANbus is an
attack vector and vulnerability

 Jeep Cherokee MY14 - Infotainment vulnerable
and interconnected with car‘s CANbus:

– Complete brake deactivation within low speeds

– Remote switch to „Parking assist“ mode on highway

 Insurance company remote telemetry OBD dongle

– Chevy Corvette MY14, Ford Escape MY13, Toyota
Prius – takeover of wipers, brake deactivation

 Input sanitization validation including
Authorization testing… Function list to ID auth
neccesity!

Wired: https://youtu.be/MK0SrxBC1xs
IHS Markit – Security and the connected car
https://www.autickar.cz/blog/clanek/
odborna-prednaska-hackovani-a-ovladnuti-modernich-aut/529/

Multiple CANbus-equipped cars, critical function hacker takeover, 2015
P

an
_M

yval , u
sed

 u
n

d
er fair-u

se

https://youtu.be/MK0SrxBC1xs

Quality Control, Quality Assurance, Test Analysis
What they are, what they aren‘t, and why it matters

 „Procedure of submitting a subject of test to such conditions or operations as will lead

to its proof or disproof or to its acceptance or rejection” (Merriam-Webster)

– Generalization: intent is logically separated from testing as activity. Decompose more...

 „Subjecting a system to certain activities and recording system response“

– This is the core definition of testing. Everything else is connected but logically separated activity

Take test instructions Record test results

Execute!

„Testing“

input outputWhere art thou cometh from?

Testing is just the tip of an iceberg

Testing is „Quality Control“. Yet Quality Assurance is far more

 Quality Control vs. Assurance
– QC = discover defects in finished product not to ship them to customer

 Person at the end of assembly line throwing defective products aside so they‘re not shipped

– QA = prevent defects during and before product creation
 Person who tunes the assembly line robot to produce fewer defective products

 Person who designs the assembly line so that it will be resilient to robot defects

 Person who designs the product to work despite assembly robot errors

 And also QC because no preventive effort is ever 100%

 QC is about
1. testing procedures (measuring, trying...), period.

 QA is about
1. analysis (identify what could fail),

2. processes (prevent the defect from being made)

3. robust design (overcome/suppress defects)

4. better QC (identifying what to check even when not obvious)

Always present workflow: QC and QA

Research Test Analysis
Test

Implementation
Test results
evaluation

Research Analysis

•System modelling

•Fault modelling

•Stress/Env limits

•Mock prototypes

Design

•Product Architecture

•Product Design

•Test Architecture

•Test Analysis

Implementation

•Test Implementation

•Product implementation

•Documentation+cautions

Testing
Test results
evaluation

QC process

Reviews

Design changes
Precautions

• All phases are always present
• Sometimes informal
• Sometimes shortened
• Sometimes improvised

Testing

QA process

Who is QA engineer? Any of these. Often all-in-one

 QA Engineer is broad term covering all preventive professions:

1. Tester: executes the test cases, verifies results and reports discrepancies

2. Test Analyst: designs test cases through systematic analysis and specific

techniques to discover possible issues, bugs, dangerous

scenarios etc.; provides feedback ad design to developers

3. Architect: supervises good design, maintenability, interoperability, integration,

growth-proof, weak points, vulnerabilities etc., mostly via reviews

4. Test Architect: choses appropriate testing strategy, test analysis techniques

5. Safety Analyst: uses expert methods to discover otherwise unnoticed or

unexpected failure modes and nodes

6. Test Automator: makes the test cases automated to avoid manual testing

Verification, Validation, and Quality

 Verification: implementation – „Are we building the product correctly?“
– Is the product, system, subsystem... properly implemented?
– Is the product, as designed, consistent, defect-free and sanitized?
– Is the product built well, without hacks, dead code, race conditions...?

 Validation: design – „Are we building the correct system?“
– Did engineers/developers understand the requirements correctly?
– Are the implicit design assumptions really substantiated and correct?
– Could the customer use the product for intended purposes?

 Quality: other aspects, unintended consequences
– Is the design enough robust, maintenable, servicable, easy to use?
– Even if the product is built to-specs, and customer is happy with it, could it cause problems?
– Could the system catastrophically fail or cause damages or harm

 When encountering unexpected, yet realistically possible environment?
 When run to it‘s limits?
 When it transitions through unexpected sequence of states?
 When some of it‘s dependencies or elements unexpectedly failed?

St
at

ic
 +

 U
n

it
 +

In
te

gr
at

io
n

Sy
st

em
 +

A

cc
ep

ta
n

ce
Fa

u
lt

 a
n

al
ys

is
 +

 S
ys

te
m

 +
St

re
ss

 +
 E

n
vi

ro
n

m
en

ta
l

Te
st an

alysis effo
rt an

d
 skillset n

e
e

d
e

d

QA Maturity levels: what is considered in TA and who could do it?

1. Level 1: positive tests only (QC) – 100 % code coverage

o Focus on proving correctness: „I will demonstrate that the SW works as advertised“

o Assumption: only correct, expected inputs are provided: „demo that the precise way I use it, SW works“

o No quality guarantee: if you deviate from the demo scenario, anything could happen

2. Level 2: destructive tests (QC)

o Focus on destruction: „how can I break it“? → find defects in-dev, not in-the-wild

o Challenge developer‘s assumptions, discover un-sanitized inputs

o Systematically pursue top achievable code, but still implementation-focused

3. Level 3: reduce risks (QC+QA)

o System-focused: reduce overall risks even due to external influences; review design

o QA engages in tests – but also in design, architecture etc., to warn about possible dangers early = cheaply

o Environmnental and integration testing, „testing of tests“ (=processes, coverage checks – eg. Test Classes...)

4. Level 4: preventive actions accross entire team/company (QC+QA)

o All of the above, plus systematic expert QA models for defect prediction, tools and processes, reviews...

Ex
p

er
t

Q
A

an

al
ys

ts
Q

A
E

=
Te

st
er

 +

Te
st

 A
n

al
ys

t
Te

st
er

s
o

r
an

yo
n

e:
D

ev
s,

 m
an

ag
er

s.
..

Te
st an

alysis effo
rt an

d
 skillset n

e
e

d
e

d

Level 4 QA can be done without bureocracy and even in Agile

 When we adopted formal „Test Analysis“ task/phase, TCs increased ca. 100 %

(From sometimes as low as 20 to average 50 scenarios / 250* Test Cases per single feature)

 When we adopted „Test Classes“ technique, TC increased further ca. 100 %

(To average 80~100 scenarios / 500* Test Cases per single new feature)

 „Quality PI“ gave us chance to implement techniques straight from handbook (Defect RCA+FTA) to

further double increase critical „pain feature“ coverage

(From 100 to 200 scenarios / 1,000* Test Cases per single feature, plus vastly increased QA/SE confidence)

 Since 2016, all tests for new features are automated and TestDataGen provides fast recreation test data for

almost any issue

(Automation was 1st, Test Analysis introduced right after basic Automation was usable)

*each scenario is run in several modifications with various Db2 variables and ENV combinations, hence in

average: Test Cases = 5~7 × Scenarios

QA Maturity Levels: techniques and approaches employed

Anyone (test technicians) Test Analyst + test technicians TA+TT+Expert analysts

DEBUGGING VERIFICATION TESTING DESTRUCTIVE TESTING RISK REDUCTION PREVENTIVE QA

Ad-hoc tests Prove SUT works with:
▪expected inputs
▪customer use-cases
▪industry standards

All from L1, + All from L1 + L2 + All from L1 + L2 + L3 +

No reproducibility BVTs, EPs+DIs QA of QA: Test Classes Formal iterative loops
design↔analysis

Pass: once ¬crash HOET Architects, Test Analysts

▪Prove negative function:
▪correct error messages
▪no false positives

FMT Ad-hoc Design feedback Models to find defects:
▪State Transition Testing
▪Fault Tree Analysis
▪FMEA
▪Data-flow testing

Stress testing Environmental testing

Prove client compatibility Load testing Fault Insertion Testing

Regression testing

Function Lists Escaped defects RCA

Test analysis effort and skillset needed

The „Test Coverage house“: why automated brute-force testing isn‘t solution

 100% Code coverage: execute each statement

 100% Path coverage: test all paths thru branches

 Example: code coverage=2×m, path coverage = 2m TCs



 Simple program with 70 branches: 270 ≅ 1,2 sextillion

 Automated testing with 30sec á test case: 1015 years

 100% Path coverage = maximum but rarely possible

 100% Code coverage = reasonable minimum

 Test analysis = hand-pick important test cases

Path coverage

Code coverage

Te
st an

alysis

• With just these 2 test data sets:

We achieved 100% automation, 100% code
coverage, 100% path coverage!

• Enough? Really? What about other tests?

• Point: not just the code flows…
But also the data flowing through!

• And we build 100% automated tests:

It‘s worse. Even 100% Path coverage assures nothing – because Data Flows

• Imagine such simple code (just 2 branches)

QA mindset
Divergent VS convergent thinking

QA‘s mindset

 Reviewer and Test Analyst roles are the core of QA‘s job and personality

 Differences between QA and developers: mindset and way of thinking

– Developers (problem solvers):
 convergent thinking

 „how-to-achieve“ mindset

– Test analysts (problem finders):
 divergent thinking

 „what-if“ mindset taken to the extreme

 Additionally, ISTQB states that QA should be:
– curious, professionally pessimistic, with critical eye, attentive to details

– that doesn‘t mean being insulting and critical about developer‘s work!
QA‘s mission is to help the developer, not to be the Grim Reaper!

Convergent VS Divergent thinking

 Coined by Joy P. Guilford, popularized by Malcom Gladwell

 Convergent thinking: many inputs → few outputs

– Finding „one correct solution“, eg. solving math equation with many variables

 Divergent thinking: few inputs → many outputs

– Identifying many alternative solutions, original uses of things, problems not seen by others –

eg. MacGyver, inventors

 The job role problem:

– Developers (& Test Automation) must use Convergent thinking: they get requirements and

must devise and code single correctly working solution

– Test Analysts must use Divergent thinking: they get single solution (or specs) and must find all

the things which could go wrong; everything the Convergently thinking Developers couldn‘t see,

have ignored for the sake of wrong assumptions or haven‘t even thought could happen

– Both Convergent & Divergent thinking are critically needed, go hand-in-hand!

Let‘s play a game

 Guilford‘s Divergent Thinking Fluence&Originality assessment

– „Find original uses for common items. Be creative. Be original.“

– See which and how many uses you could find for a

normal Brick
– Test Analyst needs to write down both ordinary, apparent and boring as well as original, exciting

and improbable uses – so write down both to get points!

– Scoring:

 3 points if your listed use of the item is unique within the whole group

 2 points if your listed use of the item is shared by max. 2 other people but not the whole group

 1 point if your listed use of the item is shared by more tthan 1 person

Why is this important?

 Because
– not all people could be good Test Analysts (and it would be waste to force strongly

Convergent-thinking person on Divergent TA, or vice versa)

– Multi-role QA‘s switch between Divergent (analysis) and Convergent (implementation)

modes!

 Time consideration:
– Switching to Convergent thinking: near-instant; natural=easy; quick immersion

– Switching to Divergent thinking: 10-30 minutes; hard; slow „take-off“

 →If possible, process-wise separate Divergent and Convergent QA activities

 TA as subset of Automated testing: degradation of TA performance
– Convergent „ to achieve“ thinking (Repo/Console control, high-level coding) mixed with

– Divergent „why“, „what-if“ thinking (test analysis to identify individual Test Cases)

– → time savings on automation phase, time (and quality) penalty on analysis phase

Errors propagation
Don‘t mistake the effect for the cause

Defect → Error → Failure cascades

 „Bug“ is wide, umbrella term

 Error you observe means that problem has

reached an external interface – such visible,

apparent error is called failure

 But actual root cause could be elsewhere: root

cause is defect

 Between bug and it‘s manifestation could be

many steps through which error spreads

 Why to distinguish? Because otherwise you could fall for the trap of:

– searching for the defect at the module/step where the failure manifested... While it‘s really

somewhere else

– having invalid assumptions

Inspiration: finding the Pentium FDIV bug

In October 1994, Dr. Thomas Nicely noticed an errorenous calculation in his distributed
computing system – a failure. One of the recreations is this:

4195835.0 - 3145727.0*(4195835.0/3145727.0) = 0 (Correct calculation result)
4195835.0 - 3145727.0*(4195835.0/3145727.0) = 256 (Incorrect result = bug)

He went bug-hunting to isolate the root cause.

1. He first reviewed and refactored his code (3000 lines).
But the bug wasn‘t there!

2. He discovered that the compiler optimizations enabled similar bug.
But after disabling this „cause“, the bug returned again – this was an error!

3. He reviewed the motheboard because some Neptune chipsets corrupted PCI data.
But the bug appeared even on reliable, cross-checked chipsets!

4. Then he disabled the FPU coproccessor in real-mode DOS.
Disabled FPU → no failure. Enabled FPU → failure. This was the defect!

Lesson learned: what you think is a bug might be only another manifestation of the
bug (=error), not the real cause. Fixing this „faux cause“ will just hide the real bug!

Defect → Error → Failure: data flow example of cascading error

Trainees were to fill in keywords in JCL steps:

• 1st step was to extract job output of a
report to a temporary dataset.

• 2nd step was to delete all lines of the
dataset from 1st step before the string
„Report Date“.

• 3rd step was to compare output of the
2nd step with similar output.

Some people were getting JCL error at the 3rd
step: a „dataset not found“ failure and RC=4
from the 2nd step.
However, the true defect was in the 1st step!

Root Cause Analysis
Find&fix the true cause, not a scapegoat

 Why?

– Curing symptom instead of Cause only hides the problem (see Thomas Nicely Pentium FPU)

– There can be multiple concurrent causes, removing just single may look like a fix but is not

– More reliable method to address Root Cause can be found (eg. design change which renders it

impossible for component to fail; avoiding the need for fauiling component; etc.)

 How?

– RCA: systematic methods to decompose chain of events all the way to the original cause

– „Storytelling“ how did the failure happen: how it all started and why it went wrong

– Finding „just contributing factors“ instead of superficial („dumb workers“ vs. „insufficient instructions“)

– Goal and mentality: not punish, but prevent reoccurence of the failure

 Methods

– Fishbone diagram, Tree diagram

– „5 Why‘s“

– Run chart

What is Root Cause and why target it?

 Plotting of values in time, searching for correlation before failure

 Effective for finding „time causality RCs“, eg. insuffucient frequency of PM

 Basis of all „Machine Learning AI preventive analysis“

 Correlation ≠ implication! What if discounts are each 10d?

 See: http://www.tylervigen.com/spurious-correlations

Run chart

http://www.tylervigen.com/spurious-correlations

 Assumption: asking „why“ 5× usually gets you to the point

 Pro‘s

– Often works... IF the root cause is 1) single, 2) simple

– Not too superficial, nor too exhaustive... Average.

 Con‘s

– Cannot work / misleading when root cause happens by coincidence of more factors

5 „why‘s”

EFFECT CAUSE

Worker injury because Fell

Fell because Slippers surface

Slippery surface because Oil leak

Oil leak because Seal ruptured

Seal ruptured because Replacement interval not met

 Focus on examining different catherogies of causes (people/design/tools/processes/...)

 Every cathegory = cheat sheet for examining hypothetical causes to be examined

 All reasonable causes are examined, real causes identified, systematically addressed

Fishbone diagram (Ishikawa)

 Combining the best from „5 why‘s“ and Fishbone: any number of levels, categories

 Plus combination of causes, plus logical operators:

Tree diagram

Assumptions and ambiguity
The biggest obstacles to Validation

Always challange assumptions. Especially „cannot happen“/„will always“

 Convergent thinking effect: developers must use assumptions to code

 Sometimes, these assumptions are implicit yet unsubstantiated

– „The system will never lose electrical power.“

– „No user would ever use characters like «{» or «]» in his user name.“

 Often, these assumptions are fragile or unhealthily dependent

– „Negative value on input could never occur, function XYZ prevents that.“

 What if function XYZ is defective? What if the input circumvents function XYZ?

– „Input will have value of either «1», or «2».“

 What if «3» is added in the future? What if «-1» is passed due to computation error?

– „The system will never run for longer than n days“

 Remember the Patriot PAC-3 in Kuwait

Always challenge assumptions. Also implementation assumptions.

 ISTQB standard-issue example: developing an e-mail system
„As a user, I want to send and recieve e-mails

so that I could communicate with my family and co-workers“
 Simple use-case, many missing answers

– Encodings support?
 7-bit ASCII + Base64?
 Unicode?
 Native Unicode or encoding schemes & transfer-encoding, HTML entities?

– Attachments?
 Types?
 Size?

– Content format?
 Plain-text?
 HTML?
 RTF?

– (...)

Handling the inputs
Equivalence partitioning, Dependency Islands,
All-pairs testing Ortogonal arrays

Equivalence Partitions and Boundary Values Analysis

 Imagine your software has flow with several important code paths dependent on

integer variable X, and input could be anything within -100 and +100:

 All values within „switch condition“ belong to identical EP = like 1

 Each „switch condition“ (x=10/20) represents a „boundary value“ (BV) which you test

 But you also need to test above and below BV to cover errors in „<=„ and „>=„ logic

 You also need to test negative values and variable boundaries (int: 32768±1)

X<10

X<=20

Action „A“

Action „B“

Action „C“

An
o

An
o

Ne

Ne

X

X value Action

-5 A

9 A

10 B

11 B

19 B

20 B

21 C

100 C

 If you have more input, you have to multiply inputs with their EPs:

(№ of Input 1‘s EPs) × (№ of Input 2‘s EPs) ... × (№ of Input N‘s EPs)

 10 inputs with 4EPs each = 4 × 4 × 4... × 4 = 410 = 1,048,576 tests

 Only combinations of inputs affecting shared output = Dependency Islands

 (i01 × i02 × i03 × i04) + (i05 × i06 × i07) + (i08 × i09 × i10) = 44 + 43 + 43 = 576 tests

 Difference: 1023 (ranges without EPs) vs. 106 (just EPs) vs. 102 (DIs)

 Warning: gray-box testing – could trigger incorrect assumptions!

Dependency Islands within Equivalence Partitions

System Under Test: 10 inputs, 3 outputs

i01 i02 i03 i04 i05 i06 i07 i08 i09 i10

o01 o02 o03

 What if you cannot use Dependency Islands, but have few
inputs with few EPs?

 Brute force each-with-each has many redundancies (i01 × i02
as well as i02 × i01...)

 Studies: most defects caused by single-mode or double-mode
faults (1|2 vars only)

 → Not „each with each“, but „each with exactly one else“

1. pair all the inputs: Binomial coefficient

where n = pairs, k = 2 (eg. 3 inputs = 3 pairs, 4 inputs = 6 pairs)

2. Ortogonal array with columns = inputs, rows = EPs per each input

3. Fill sorted pairs of inputs to avoid missing any combination pair, using

ortogonal arrays

 Ortogonal arrays hard to construct

– Template: support.sas.com/techsup/technote/ts723_Designs.txt

Ortogonal arrays: all-pairs testing for dependent variables

i01.EP1 i02.EP01 i03.EP03

i01.EP1 i02.EP02 i03.EP02

i01.EP1 i02.EP03 i03.EP01

i01.EP2 i02.EP01 i03.EP02

i01.EP2 i02.EP02 i03.EP01

i01.EP2 i02.EP03 i03.EP03

i01.EP3 i02.EP01 i03.EP01

i01.EP3 i02.EP02 i03.EP03

i01.EP3 i02.EP03 i03.EP02

http://support.sas.com/techsup/technote/ts723_Designs.txt

Fail-safe, Fault-tolerant, Single Point of Failure
It‘s important how systems fail

 Failure of a component directly causes failure of the entire system
 Architecture variants:

1. failure of a component independently causes failure of system
(eg. overflow→overwrite of RAM, breakdown of fuel pump→fuel tank breach and explosion)

2. failure of a component propagates an error which causes failure of subsequent components and system
(eg. corruption of user data, which cannot be recovered)

 Manifests when:
– there is no backup/check of an important component

(Boeing 737MAX, LA610, 29.10.2018: MCAS drawing on data from single AoA sensor)
OR

– failure of an important component is not / cannot be detected

 Discovery in QA
– Fault Tree Analysis – any Minimal Cut Set, which doesn‘t contain „OR“, represents a SPoF

Single Point of Failure

 Component could be designed to recover from intermittent, random errors
 Architecture varians:

1. simple „retry“ – ignore error, wait, retry
(eg. simple loop to repeat instruction/function again)

2. „error masking“ – error is thrown away and not propagated „downstream“
(eg. threshold which cuts-off spikes from analog input data; router which deletes bad packets)

3. rollback-to-savepoint – revert to earlier snapshot of correct data
(eg. „recovery points“ in Windows OS, ImageCopy of DB)

 Requirements:
– system is resistant against partial data loss

(from savepoint to rollback; thrown away bad data; ignored data)
– error is temporary and random, not systematic or persistent
– error doesn‘t manifest too often

(it‘s not possible to ignore/drop 50% of packets on network and still provide connection/service)

 Architecture risks:
– endless loop waiting for recovery – a watchdog circuit/function is required

Recovery from intermittent error

 Failure of a component is isolated, contained and does not lead to system failure
 Architecture variants

1. Failed component shuts down contained and transfers function to existing backup
2. Failed component restarts into default („semi-fail-safe“, but still semi-SPoF)

 Functional requirements
– Detection of error or failure
– Complete isolation of failed component from system

(eg. fuel pump explodes, but firewall prevents schrapnels from rupturing or igniting the fuel tank)
– System is resilient to outages before backup is online, OR system uses „hot backup“

 Architecture risks
– Fault to detect Failure
– Fault to transfer function to Backup (backup N/A, backup not „woken up“, cannot transfer function)
– Fault to provide resources for contained shutdown of failed component

(parking of HDD heads during power outage, Fukushima reactor fuel cool-down)
– Common Component Faults

Fail-safe

 Parralel processing in multiple identical components
 Outputs are compared, deviation from „democratic majority“+tolerance is considered

faulty and the deviating component is flagged and shutdown
 Architecture variants:

1. independent evaluation of multiple sensors

 Functional requirements:
– each fault-tolerant component is completely independent „upstream“ (no shared sensor, data source)
– odd number of fault-tolerant components to prevent draw → minimum of 3

 Architecture risks:
– „democratic majority“ of components is wrong

(Airbus 320, LH1829, 5.11.2014: frozen AoA1=4,2°, frozen AoA2=4,6°, functioning AoA3 „lost the vote“)
– the one commands-issuing component has time to propagate error before it‘s flagged as deviating

(Airbus 330, QF72, 7.10.2008: spikes in AoA1 shorter than 8sec threshold → not-suppressed)

 Discovery in QA
– FTA needs to confirm complete upstream redundancy

Fault-tolerant

 Backup is identical as Primary in design/parameters and fails for same reasons
 Manifests when:

1. the components were unfit for the use (too weak, too low memory, insufficient material strength)
2. all components were identically incorrectly installed (too small allocation of HW resources...)
3. all components were identically exposed to wrong maintenance (bad patch, copypasted config file)
4. all components were exposed to the identical rush environment (large data flow, high temperatures)

 Manifests when:
– variant №4:

– Any Fault-tolerant system
– Fail-safe system with Hot backup

– variants №2-3: system is „destined to fail“ due to external influence
– variant №1: component shouldn‘t have been used in the system

 Architecture risks:
– probabiility n of m components failing independently on each other = Pindep=nm

– probability n of m identical components failing commonly = just Pcommon= n × PCCF = larger by magnitude
– eg. if m=3 components, n=10-3, PCCF=10-2 – then Pindep=10-9 but Pcommon=10-5 = 10,000× more probable

Common Component Failure

Integrity levels
Figure out how throuhgly you need to test

Consequence-based required integrity levels

If the software fails: Integrity level

No mitigation is possible and catastrophic consequences will occur:
• Loss of human life
• Complete system or mission loss
• Loss of system security and safety
• Extensive financial, social or environmental loss

4

Partial-to-complete mitigation is possible but critical consequences will occur:
• Major and permanent injury
• Partial loss of mission or major system damage
• Major financial, social or environmental loss

3

Complete mitigation is possible but marginal consequences.
• Moderate injury or illness
• Degradation of secondary mission
• Moderate financial or social loss

2

Mitigation is not even requiered since only negligible consequences will occur:
• Minor impact on system performance
• Operator inconvinience

1

PROD data loss

Severity-Probability chart: what to focus on

 Divergent „what-if“ mindset and FMEA

identify 100s possible problems

 „Exhaustive testing is impossible“: there

are more code paths in Unix than atoms

in our galaxy

 Solution: 2D probability-severity graph

 You must test for upper right quadrant.

 Then top half, then right half.

 But how to figure out which all

quadrants must be covered?

QA versus Agile, TDD, „safe-to-fail“

 Processes are here for you (not you for the processes)
– Processes cannot compensate for unskilled or complacent humans („ISO 9000 myth“)

– Processes are not goal on their own („Death by processes“)

– However, highly skilled people without processes can fail: forget or skip what needs to be done

– Agile Manifesto: „individuals over processes“, not „no processes“ → hack processes to your needs!

 Finding enough time for analysis is challenge, but could be overcome
– Need to prioritize, use Risk-based testing (Integrity Levels, Fn list → FMEA → Critical Fn list)

– „Individuals over processes and tools“ → modify tools – lightweight/partial FMEA, FTA, STT...

– If you have >1 QAs, you can paralelize tests and TA:

– Design & Logistic sprints („people over processes“)

– Expert TA shared between teams akin Architect

 Don‘t forget the mindset & skillset considerations
– Nor Devs nor „Basic Testers“ have skills for „Level 4“ QA and Test Analysis – you need proffesionals

– frequent/cyclic switching between Divergent/Convergent thinking inefficient, detrimental to coverage

– Both are „processes“ considerations – how, when and with whom you get the work done

Few words on Level 3 / 4 QA and TA in Agile methodologies

 TDD: „first write tests, then develop SW to pass these tests“

 if it takes >week to do TA and then some to write TCs, will DEVs sit idly? No...

 IRL, „TDD“ means „developer writes Unit tests and then code to pass that UTs“

 Unit Tests positives:

– lead to „Defensive programming“

– greatly increase code quality (psychology)

 Unit Tests limitations:

– cannot be exhaustive: you mostly cannot say „∀ input x, f(x) works correctly“ (unassumed vars)

– test smallest artefact → you can never say „if all artefacts pass UT, system works correctly“

– inherently can‘t Validate design, can‘t verify DEV‘s assumptions, can‘t test INTEG or ENV

 Unit Tests are inherently „Level 2: positive testing“ or „Level 3-“ QC insufficient

 Unit Tests cannot be considered replacement even for QC, never for QA

TDD: Unit Tests are good start, but never enough

Killing the false myths: QA vs. Culture of improvization and skill-lessness

 „robust approach to testing, which is costly (...) TDD ... your codebase
includes robust unit-test coverage. This guarantees that the system will
work as the developer intended” –Devskiller.com
„We cannot say the function is correct for any input. We cannot say that if
all modules works, the system works together.“

 „Move fast and break things“ –Mark Zuckerberg
„Move fast with stable infra“ –the same Mark Zuckerberg later on

 „In Agile world, developers became testers ... developers perform
tests and testers perform development“ –Ray Arell, Agile Alliance
„if ¬(∀Dev→Dev ≈ Architect), then ¬(∀Dev ≈ Test analyst)“

 „Our SW will never be mission-critical, doesn‘t need big QA“
VS. Chrysler infotainment, CIA comms web-app, Metromile hackable dongle

 „Agile says to quickly move forward via trial-and-error“

„Take small steps ... adjust based on what you learned ... take the path that

makes future change easier“ –Dave Thomas, Agile MF co-author

Lunch break

Test Classes
QA engineers best friend, checklist and cheat-sheet

Test Classes: cheat sheet to remember&organize your TCs

 QA includes lot of test topics/techniques for each
Maturity level

 Even we haven‘t went through all of these

 So how to:

– Not forget to consider any important test topic?

– Avoid duplicate testing?

– Not get lost in all the Test Cases and organize it?

 Answer: with Test Classess!

 Officially (per IEEE 829-2008):

– „A designated grouping of test cases“

– „Summarize the unique nature of particular level of test“

 Practically could be expanded into:

– Checklist and Cheat-sheet for Test Analysis

– Organizing structure („spine“) for the HLTCs identified

a) Smoke tests

Subset of tests verifying only the most basic functionality (like level 1 verification testing); why?

Because if even the most basic tests fail, there is no point in more testing – the SUT needs

extensive fixing and re-test

b) Inputs that should be included in output successfully

Testing of valid and positive inputs: eg. in DB, when you SELECT LIKE(A*), SUT returns records

„Amy“, „Amanda“ and „Andrej“. Complex test coverage against false-negatives, missing or

incorrect calculations/data.

c) Industry standard values based on usage profiles

You have standardized data exchange formats (UNIFI/XML, Exactis/JSON, etc.), syntax formats

(W3C, IEEE, etc.), containers (Docker). Your product should handle even the most extensive

variants of standards since they are allowed.

d) Consistency processing

Run SUT several times with relevant inputs unchanged. It shall not change despite changes in

„irrelevant inputs“ (system time, workload, etc.)

Test Classes types: Positive tests

a) Negative outputs
Outputs which should NOT be included. This isn‘t destructive testing, this is
positive testing with double negation: when the SUT should NOT do something,
we prove it really DOES NOT. Eg. DB with filter on „A*“ shall NOT return „Dave“.

b) Failure mode tests
Verification that when product fails, it behaves correctly. Not destructive.

I. Failure Mode sanitization: when component B depends on component A, what happens when
component A fails? Is it sanitized in component B?

II. Error messages: you need to test that when something fails in SUT,
a) error message is issued,
b) appropriate/correct error message is issued,
c) no false-positive error msgs.
Example: IBM Db2 -405: numeric constant out of range for 9x10E18 while range is 7x10E75

c) Fail-safe
If the SUT contains Fail-safe components, tests must verify all 3 principles of Fail-
safe: fault detection, fault isolation, and backup

Test Classes types: Negative tests

a) Advanced/atypical activity
I. „Stateful“ scenario testing: use a sequence of steps to bring the SUT into an atypical

but allowed state, and only then start testing other inputs (=SUT starts in a different

state than typically)

II. Using allowed but rare utilities, processing options/settings: concern especially

with interoperability, reporting, auditing. Compatibility modes, runtime „-parms“...

III. Rollbacks, incident recovery: rare but extremely important; very hight potential for

data corruption caused by state-transitions going forth-back-forth...

IV. Concurrent activity: something else runs in parralel with SUT sharing the same data,

connection etc., there could be conflicts (subjectivelly intermittent errors)

V. State transition testing: real STT using SUT ST models, especially back-and-forth

transitions and „transition leaps“, and race conditions or state-transition-interruption

Test Classes types: Advanced & Destructive tests I

b) Advanced/atypical objects handling
I. Using allowed but rare object parameters, variants, options: similar to

previous test sub-class but focus on objects, not procedures. Eg. file
attributes, physical parameters (line length, paging/segmentation settings
etc.); OPP object instances of overridden types; anything non-default and
exotic.

II. Advanced object types: eg. DBs special table types (eg. LOBs, Archive and
History tables, temporary virtual tables instantiated from selects...); exotic
container types or variants; ancient or exotic but allowed formats (.CAB
archive on Windows? HTML 4.x deprecated features in 2020?
Japanese/Asian formats?)

Test Classes types: Advanced & Destructive tests II

c) Advanced/atypical (host) system states handling
I. Once-in-a-nevermind events: DST changes. Leap year. Log rotation. „Y2K“.

File system migration. Host system upgrade. Host system downgrade. Any
irregular event which may affect the SUT but happens so rarely that it
could be severely undertested – until the „wrong“ combination of input
parameters occurs.

II. Host system in degraded mode/recovery mode/limited capacity:
eg. banking core servers on backup power with reduced
cooling=workload capacity; production database in recovery mode
trying to recover lost data; etc. Emergencies where correct
functionality is critical but resources are limited both performance-
wise and SW-wise.

Test Classes types: Advanced & Destructive tests III

c) Fault insertion tests
Testing how does the system detect and handle when the data it uses
become corrupted. Eg. damaged packet received; or file contents
garbaged by HDD faulty sector; or half-written config file is attempted
to be read.
Example: infinite loop on Db2 IC damaged via utilities

d) Other relevant failure modes
A placeholder for other advanced destructive tests covering potential
threats detected by FTA, FMEA, or RCA of customer defects, which
however didn‘t fit anywhere else (or it would be pointless bureocracy
to split it)

Test Classes types: Advanced & Destructive tests IV

a) Boundary values testing
I. Freeform input values limits

Testing how the length and size of variables entered by user is handled (eg. that you cannot
enter more digits/characters than allowed, that you cannot enter value higher than allowed
(eg. 32769 for integer)

II. Internal EP/BVA testing
Path testing within the code depending on user inputs (EPs+BVAs depending on the switches
within the code regarding freeform values)

b) Processing pre-defined switches/options
Again EP/BVA testing, only this time limited just to pre-defined paths (eg. you
have checkboxes, drop-down menus and other enums)

c) Stress testing
When you say the SUT could handle files with 106 rows, or run for 100 days
consecutively, you go and actually try that if you stress the SUT so, it doesn‘t fail

Test Classes types: Equivalence-partitions-based tests

Not „what you do“ with inputs (EP/BVA) but „how do you handle“ them

a) Human Operator Error Tests
I. Input sanitization handling

How are unexpected/undesired inputs handled. Eg. characters instead of digits; apostrophes;
Unicode characters from range>255; brackets; periods, but also and crucially „TAB“ (\t), newline
(\r\n), and null (\n or \0) characters absolutely need tests

II. Character conversion handling
Most systems could be accessed with multiple encodings; how do you handle conversions,
especially of critical characters? Eg. in IBM DB2 for z/OS natively operates with CodePage 500,
everyone in EMEA uses it in CP037, and then „<![CDATA[„ becomes „<]¬CDATA¬“;
how about „odd“ encodings like 7b-ASCII, UTF-7, or Base64?

b) Internal data definitions handling
When you use constants or pseudo-constats which are matched, is the same really
being matched everywhere the same? Especially important during regression testing
where the constants may change...

c) External inputs handling
Loading inputs from outside SUT itself. Config files (even your own – test different/old
versions, user-made-edits, etc); Object lists passed by interoperable systems; etc.

Test Classes types: Input tests

a) Actual SUT payload

Not „what do you make“ but „how does it look“. Line-wrapping, print paging, paragraph

breaking, but also crucially completeness of displayed data

Example: C# RichTextBox and maximum of 2,147,483,647 characters vs. SQL generator

b) Messages and codes shown to the user

Like Error messages handling, but here it‘s about informational, advisory and warning

messages.

c) Correct file handling

Allocating, de-allocating, file locks are being enabled and removed, file/FS consistency isn‘t

being corrupted, etc.

d) Database interactions

If you‘re saving the outputs, logging or doing anything with DB, verify the SUT writes correct

data and handles DB considerations incl. locks and timestamps of data OK and consistently

Test Classes types: Output tests

a) Compliance to mandatory regulations
If you‘re developing SW for aerospace, your SW needs to comply with DO-178C and/or MIL-
STD-1345B. If you‘re processing private informations, you must comply with GDPR. Etc. In
either case, state/EU/Federal regulations require additional special test cases.

b) Compliance to relevant industry standards
If you claim that the SUT „supports“ Unicode, XML, WiFi..., these are standards (RFC, IEC, IEEE,
ISO, ANSI, W3C...) with many small features and catches and you need to test whether you fully
support all these, otherwise you lie and can be sued.

c) Interaction with maintenance or utilities
If your SUT could be influenced by utilities such as Defragment, DB Reorg etc., or maintenance
activities, you need to test surviving them.

Test Classes types: Feature/implementation specific tests

a) GUI tests
Testing effort of it‘s own focused on front-end; it doesn‘t need so much Test
Analysis, but may benefit from Ortogonal arrays all-pairs.

b) Help tests
Often forgotten or outdated, help documents, help panels and especially
interactive help should reflect all current behavior and features.

c) Device/Terminal compatibility
Users may use wide variety of screen resolutions (eg. Lubuntu 800x723), screen
orientations („portrait“/“landscape“), screen combinations (extended desktop,
multi-monitor setup), devices (desktop, server with reduced multimedia
support, handheld devices, text-only devices for blind people and UNIX
consoles) etc. Do you really support them all?

Test Classes types: User front-end tests

a) Interfaces to internal features and system
Integration testing with things your SUT internally needs to function, or
modules which are shared with other systems

b) Interoperability with external services and systems
If your SUT works stand-alone, but is designed to either process data generated
by other system(s) „upstream“, or generate data processed by other systems
„downstream“, double-check that all systems in the data chain are on the same
page

c) Interference from external services and systems
When your SUT is stand-alone, but isn‘t the only system on a host, could other
systems influence it, interfere with it? Eg. locking needed resources,
overflowing into your SUT‘s memory, etc.?

Test Classes types: System integration and interoperability tests

a) Comparison testing
If you compare the newly developed SUT version with older, didn‘t
performance significantly degrade? Are the users really willing to sacrifice
performance for new features? What about competition‘s performance?

b) Load testing
Isn‘t system operation near it‘s maximum workload unbearably slow?

c) Consistency testing
Doesn‘t SUT noticebly slow down witch each chunk of data added?
(Sometimes it‘s good to „normalize“ via artificial timers so that customers
experience constant response rates instead of gradual slow-down)

d) (Stress testing might look as kind of performance testing but belongs to
boundary values testing because you‘re testing ability to handle, not the
performance in time)

Test Classes types: Performance testing

Demo: how Test Classes help QAEs

 Standard QA training excercise „How would you test an electric keetle“

 Typical answers, coverage of Test Cases limited to few:

– Temperature: The water should be boiling to ensure maximum tea flavor. Do you assume that just because the

kettle switches off that this means the water is at 100C?

– Safety: If there is no water in the kettle, does it still heat up?

– Performance: How quickly does it boil?

– Load: Is it going to be used in an office where it could be in constant use from 9-5, or will it be at home where

it’s main use will be 7am on weekdays and 9am at the weekend?

 Now compare them with Test Cases based on Test Classes:

www.tulon.cz/QA/kettle-revisited (from page 2 onwards)

 The difference in coverage is only result of experience with Test Analysis (which you

will gain with time), „subconscious mental FMEA“... And of using Test Classes!

http://www.tulon.cz/QA/kettle-revisited

Finite state machines are your friend
State Transition Testing, Stateful and Environmental Testing

State transition testing

 When the SUT transitions between discrete states:
– Unexpected „from-to“ transition could trigger Defect

– Long sequences of state transitions could trigger Defect

– Repeated „oscillations“ between states could trigger Defect

 Solution: State Transition testing based on State

Transition diagrams, specifying:
– Model of states SUT could occupy

– Transitions between the states

– Events which trigger the transitions

– Results of the transitions

 Watch for
– data flows – biggest source of defects in STT!

– unfounded assumptions of transition results (transition fails...)

– unfounded assumptions of expected events (2-button-press...)

– combination of state transitions with outside factors (velocity...)

Graphics: Carneige Mellon University, Safety modelling with AADL, 2015, under fair-use

Stateful I/O analysis: what was assumed („EGI could have 2 states“)

Each subsystem
= finite-state machine

with input, output, states

Stateful I/O analysis: when assumption is wrong („unsanitized 3rd state of EGI“)

Graphics: Carneige Mellon University, Safety modelling with AADL, 2015, under fair-use

Function Lists

Function List

 All the Acceptance Criterias are Explicit Functions. Eg.:

– User should be able to authenticate

 But this requires many pre-requisite or supporting Implicit Functions.

 And each implicit function could require more Implicit functions. Eg.:

– Write Login screen GUI

– Create Credentials storage

 Create and deploy database engine configuration file

 Create ODBC connection to the credentials database

 Handle exceptions regarding Credentials storage

– Issue error messages and document them

– Add function Function to reset password

 Without Function List, Developer would solve these informally as-they-pop-up

 And unforseen Implicit functions would require Refactoring = source of bugs

Expert methods for finding Failure Modes and Nodes
Failure Mode Effect Analysis and Fault Tree Analysis

Finding unassumed problems: Failure Mode Effect Analysis & Fault Tree analysis

 „Failure mode“ = „How things fail“

 „Effect analysis“ = „What happens if they fail“

 „Root cause“ = „beginning of cascade of failure“

 „FMEA“ is analysis to identify and record:
– all discrete functions/components which could fail,

– how could they fail

– what would happend if they fail,

– what could be done to make them not fail

 FTA is analysis to identify and record:
– all the root causes which could cause a given failure

– why can a chain of events leading to failure get triggered

– what functions, systems, modules or environmental variables could facilitate a failure

– what failures which are harmless on their own could cause disaster when combined with others

– what is the probability that such failures would occur and combine to worsen resulting effects

System TV Flight tests

Polaris AX 1958 ████████████

LGM-30A 1959 ████████████

Polaris A1 1959 ████████

SM-65E 1960 ██████████

LGM-30B 1962 ██████████████

LGM-30F 1964 ██████████████

FTA VS physical flight test failures ($1,4M/$11,5M)
Guess which system used FTA and which didn‘t?

FMEA vs. FTA: similar but opposites

FTA:

deductive - identifying a major failure, then

finding possible causes. Focus: failure reasons.

FMEA:

inductive - identifying components and listing

their possible failures. Focus: failure effects.

Component 1 Failure 1.1 Effect 1.1

Failure 1.2 Effect 1.2

Failure 1.M Effect 1.M

Component 2 Failure 2.1 Effect 2.1

Failure 2.2 Effect 2.2

Failure 2.M Effect 2.M

Component N Failure N.1 Effect N.1

Failure N.2 Effect N.2

Failure N.M Effect N.M

FTA: Traditional contents

 Traditional FTA encodes following information

1. What is the fault we want to prevent/diagnose („Top-level event“)

2. Can this fault consist of failure on a lower level, or is it lowest possible root cause?

3. Or could it happen because of combination of failures on lower level(s)?

a) what are the logical relations – AND, OR, or AND with external influence?

4. Is such a fault realistic? No hunches/prejudice – reason why yes/no

5. Could this fault also be caused by something else?

 FTA can show how errors/defects propagate within the system

 FTA is like preventive „RCA“ (before, not after incident happens)

 FTA can show single-point-of-failures which need to get special QA

attention

FTA: how to do it

 Step 1: set up definitions
1. What is the top event (loss of system OR loss of mission)

2. What is the scope of SUT being analyzed (version, initial states, inputs)

3. What is the resolution/boundaries (when we stop asking „why“)

 Step 2: for each step
1. Identify ALL possible causes, not only obvious

2. Identify relation of causes: independent = OR / dependent = AND /
dependent in sequence = Priority AND

3. Consider only nearest immediate causes: „Think small“, smallest possible steps, do
NOT jump ahead to root cause – this is crucial for FTA!

4. Consider Primary fault (=failed because defect), Secondary fault (=failed because
unexpected environment/state), Command fault (=worked as designed but
triggered in incorrect moment)

5. Decide if the step is victim of other cause „upstream“ or primary cause

FTA simplified demo: alarm clock (without probabilities)

FMEA: Traditional contents

 Traditional FMEA contains information
1. How the components/subsystems fail (=not who coded defect, but how did the

defect get triggered)
2. What went wrong once the component failed (=chain of subsequent errors and

failures)
3. What areas were impacted by the chain of failures
4. What is the severity, probability of occurence, and likelyhood of detection by

current/planned tests
 It then uses the (Severity) x (Occurence) x (Detection) to calculate „Risk Priority“
 „Risk Priority“ → where to focus extra tests, attention and development effort
 Important: data about real-life accidents and failures are recorded to FMEA to serve

as inputs-to-consider in future developments and tests
 If you start on lowest possible component level, you identify root causes
 Boundaries are needed (FMEA on every nut-and-bolt level unrealistic)

FMEA: Traditional contents VS. „lightweight custom“

This is how traditional industrial FMEA looks like:

FMEA: Traditional contents VS. „lightweight custom“

For commercial SW, let‘s select just the columns we absolutely cannot go without

Function /
Component

Potential
Failure
Mode

Potential
Failure
Effect

S
e
v

Potential
Causes of

Failure

Current
Detection
Controls

Recom.
Actions

What
should it do

What
could

fail

What
will

happen
if it fails

##

Defect/Failure 1 Test 1 Improvement 1

Defect/Failure 2 Test 2 Improvement 2

SAE J-1739 Severity categories

FMEA severity value (SAE J-1739): good consideration

Point: safety/compliance errors without warning/announcement are the worst

Rank Criteria of effect severity Effect

1 No effect None

2 Fit & finish/estetic problem, noticed only by discriminating customer (<25%) Very minor

3 Fit & finish/estetic problem, noticed by average customer (50% of customers) Minor

4 Fit & finish/estetic problem, noticed by most customers (>75%) Very low

5 System operable, reduced performance of non-mission-critical feature Low

6 System operable, inoperable non-mission-critical feature Moderate

7 System operable but with reduced performance / customer dissatisfied High

8 System inoperable: loss of primary function / mission loss Very high

9 Threat to safe system operation, data, or compliance, with warning Hazardous+warning

10 Threat to safe system operation, data, or compliance, without warning Hazardous w/o warning

FMEA simplified demo: alarm clock

Fn/Component Failure mode Failure effect Sev Root causes

Clock Stopped Time indication stopped
/ Alarm never triggered

6 Rust

Mech. stiffened

Delayed Time indication late /
Alarm delayed

8 Int. friction

Power loss

Bad calibration

Alarm Stuck acoustic
mechanism

Alarm sound silenced 7 Int. friction

Mfg defect

Power loss

Trigger stuck Alarm never activated 10 Mfg defect

FMEA and FTA: pro‘s and con‘s

 FMEA
– Good if you know the functions/components of the system, their weak points (program code...)
– Less likely to miss possible failure mode – IF you have low-enough scope
– Inherently suggests improvements and risk mitigation
– Cannot „filter“ and ignore components on the same scope/level (1000 bolts = all or none)
– Requires very systematic approach, time-consuming
– Shallower in regards to possible root causes, concurrent causes

 FTA
– Good if you know how the system works and could fail (history od incidents, domain knowledge...)
– Less likely to miss possible root cause – IF you understand the system deep enough
– Can discover one critical, vulnerable component amongst others (1 bolt in 1000)
– Can discover how errors propagate within system
– Can discover how concurrent errors combine and affect each other and system
– Inherently allows calculation of overall failure risk given all failure nodes failure probabilities
– Easily overwhelmed with dependencies/interference accross failure nodes
– Invalid assumptions could cause omitting critical failure mode/node
– Exhaustive: FTA scope is not entire system or function, but single failure mode

FMEA and FTA: how to use them to find Test Cases

 FMEA and FTA: „Wheen <root cause> happens, SUT <fails> because <Failure mode>“

 Root cause = Test input; SUT behavior = Expected result

 → Test Case: „Even if <root Cause> happens, SUT should handle* it“

 FMEA:

 FTA:
– „Cut sets“ = minimal sufficient combination of RCs

– Cut set = 1 path through ORs but all through ANDs

– Cut sets could convert to Test Cases...

– By „running“ each Cut Set and evaluating results

*If the SUT isn‘t fail-safe, failure might not be preventable – but it is sanitizable: error messages, exception handling...

FTA real-life observations

 FTA is „holistic“ tool, contributing 40% to QA but 60% to Devs
 FTA is better by order of magnitude when pair of QA+DEV does it
 Software-based FTA enables quick refactoring (freeware: OpenFTA)
 But you lose track of nodes „beyond the screen edge“ → physical FTA printout is a must
 FTA expansion of RCA of historical defects is best

tool to make trully good new regression tests
 FTA enabled us to find potential serious defects

which surprised even senior DEVs

2,5 meters = single critical back-end feature

Self-study

Self-study: „FTA reminders“

How it all combines together
Design&Analysis phases, FMEA, FTA, Fail-safe as a workflow

Aerospace-level QA: DO-178C (FAA mandatory SW QA)

(So... How comes
B737MAX MCAS?!)

Aerospace-level QA, hacked for non-certified SW for time/effort savings

 Determine basic SW desired

functions: system+subsystem

level -> Fn List

 Use FMEA to find how desired SW

functions could fail -> Severity

 FMEA severity -> Critical Fn List

 Use FTA to find CrFnL root causes

 Use TCls to consider ENV risks

 For each dangerous and possible

failure identified by FTA, design-in

protections, mitigations

 start coding & designing tests to

cover these design req‘s,

including Fault Insertion Tests

 design tests to cover lifecycle

quality – „*ability testing“

arch
itectu

re, an
alysis, d

e
sign

←
 | →

 im
p

lem
e

n
tatio

n

„Think first, code later“

Fn list

FTA N/A
in

SW

Test
Classes

FMEA

Complete QA+Safety+Reliability workflow for non-certified SWDEV

START

Recommended resources

 Increasing QA maturity level:
– B.Beizer – „Black-box testing“ ($), „SW testing techniques“ ($)
– ISTQB Foundation level
– RTCA DO-178C ($) / EUROCAE ED-12C ($), DO-248C
– Joint Software Systems Safety Engineering Handbook

 Test analysis specification-based techniques (EP, BVA, EP DI, STT, TCl):
– ISTQB „Advanced Test Analyst“, „Advanced Technical Test Analyst“ courses and Syllabi
– BS 7925-2 „Standard for SW Component testing”, ISO/IEC/IEEE 29119-4:2015 „Test techniques” ($)
– IEEE 829:2008 „Standard for SW testing documentation” ($)

 Test analysis failure/risk-based techniques (FMEA, FTA, RCA):
– C.Wilhelmsen, L.T.Ostrom – „Risk Assessment: Tools, Techniques, and Their Applications” ($)
– C.S.Carlson – „Effective FMEAs” ($)
– MIL-STD-1629A „Procedures for performing FMEA”
– NUREG-0492 „Fault Tree Handbook”
– NASA Fault Tree Handbook with Aerospace Applications
– DOE-HDBK-1208-2012 Volume 1 „Accident and Operational Safety Analysis Techniques”
– TOR-2014-02202 „RCA Best Practices Guide” ($)

 Domain-free resources: https://broadcom.box.com/v/ATAT-QA-materials

https://broadcom.box.com/v/ATAT-QA-materials

Wrap up & final workshop
Recap and put to use what you have learned

Recap: what we learned about Quality Assurance?

 If you‘re QA Engineer = all-in-one Tester + Test Analyst + Reviewer, then

 You need to cover:
– positive, negative, destructive, functional and integration testing

– checking for Developer‘s invalid assumptions, for unforseen conditions and operating states

– Boundary Values Analysis (+related tests)

– Real or „subconscious mental“ FMEA or FTA = analysis of potential failures and their root causes

o hypothetical, discovered by analysis of components/systems/functions

o empirical, recorded from the bugs/failures observed „in the wild“ at customer defects etc.

 You decide what‘s important using
– Severity-Probatility 2D chart

– Consequence integrity levels

 You should use Test classes (designated groups of Test Cases) not to forget anything

How to start Quality Assurance instead of QC?

 Think not only how the feature/code should work/succeed, but how it could fail

 Find team member with talent for Test Analysis and add TA to development cycle

 Use Fn lists, Fn-level FMEA to gather Critical failures list; factor-in ENV worst-case sc.

 If failures can cause damage of customer (data), use system modelling (Fault Trees or at least
Data Flow Testing) → test cases + sanitization in code

 New features: architect-in maintenability, extensibility, scalability

 Always identify system boundaries /envelope and verify reliable function via Stress tests

 Always do reviews with feedback on all of:
– Architecture, x-ability, and feature/product design

– code

– test cases

 When customer defect occurs, do at least informal RCA:
– why did the defect get in (NOT „blame game“, but „how to avoid similar next time“)

– why didn‘t the architecture contain it, why didn‘t code fail-safe it

– why din‘t existing tests catch it, what tests to add to catch future similars

Q&A
And further resources

106

Final workshop: create Test Cases using the advanced methods

 In teams of two, write High-level Test Cases: not of an electric kettle, but this time, the test

subject is e-mail system

Requirements:
 Single-user, single-platform thick client for desktop
 Send e-mails via external SMTP server
 Receive e-mails via external POP3 server
 Store, retrieve, read, search already sent and received e-mails

 Use HLTCs, no need for detailed LLTCs
 Point: hands-on try all techniques covered:

1. FHA (collective effort) + FMEA + Integrity levels + Severity levels
2. Test Classes (design just 2 test cases per each Test Class and move on)
3. FTA of critical failure mode of your choice (trace at least 2 Cut Sets to their Primary Causes)
4. Bonus: suggest architecture/implementation mitigation of possible critical failure modes

Fn List → FMEA → Critical Fn List → FTA + ENV via Test Classes → Mitigation

