A MANAGER‘S PRACTICAL GUIDE
TO SOFTWARE QUALITY CAVEATS

Ondrej Tulach
Senior SW engineer / SQA / SW reliability, 12 years in CA/AVGO

Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

© BROADCOM

Throughout 12 years, I‘'ve seen enough to learn hard lessons

* The good and the bad of Waterfall and Agile

- Manual and Automated regression testing

» Ad-hoc and systematic/data-driven test design

» Targeted and Random-driven testing

« Teams led by former engineers and non-engineers

* | developed test automation from scratch and resumed/repaired pre-existing auto

« Experienced 5 test frameworks — and saw phase-out cascade-delete all
associated test data with it! (HP QC/ALM, PTG1, Versionl, etc.)

* How metrics influence, steer, damage Quality efforts
* What has really worked to decrease Customer Defects over time

You can learn what will work and what will not — without repeating the mistakes
© BROADCOM

2 | Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

Everyone only ever sees
The tip of the Iceberg

£ BROADCOM

The testing words: 99% of people get them all wrong

* Testing is (subset of) Quality Control.
 Quality Control is not Quality Assurance.
 Quality Assurance is not Software Reliability Engineering.

 Unit test is not —by far!'— a System test.
« Smoke test is not —by far!— a Regresion test.

4 | Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. -\ BROADCOM

Unit testing vs. System Functional testing

« Unit tests / Code Coverage tests:

« Coverage:
— The function as the Developer intended it
— Expected inputs yield correct outputs
— Equivalent to 100% Code Coverage

— Doesn'‘t cover the missing code needed to
handle unexpected or diffucult scenarios

« Functional+integrated System tests:

« Coverage:
— Independently the same basic function
— Hadling unexpected user inputs, data errors,
— Handling unexpected states, sequences
— Handling system influence (clock,proc,l/O...)
— Product integration (shared config, data...)

© BROADCOM

5 | Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

Smoke tests vs. Feature/Regression tests

 Smoke test suite:

1 - H » Purpose:
i — Run fast and check very basic function
| — Verify a feature isn‘t completely broken
H — To enable frequent checkpoints
— To be fast, it must be minimalist

— If minimalist, it's coverage must be small
« Regression test case suite:

r

* Purpose:
— Thoroughly verify function of entire feature
— Closest to 100% test coverage as possible
— Function + integration + sanitization

— Regression test case suite = Feature's
Functional+System tests re-run on old code

rrrrrrrrr

rrrrrrrrr

© BROADCOM

6 | Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

Lessons learned: The iceberg issues

» Don't think that Unit tests or Code coverage mean ,tested enough” — they‘re only
the 1st half

* Do not mix Smoke and Regression tests: you will get a cat-dog which is neither
fast (like Smoke tests) nor has the high coverage (like Regression tests)

 All new features must have Functional Tests Suite to verify all their aspects are
good. This will sunsequently turn into Regression Test Suite for that feature

— If you skip this, you will still have to invest the same effort into Regression tests later on,
but will cause more defects to be introduced and reported by customers!

» Don't skip ahead and start with ad-hoc ,testing” without spending quality time on
Test Design and Analysis

© BROADCOM

7 | Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

Dangerously misleading ,,testing lingo*

£ BROADCOM

Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

When you say ,,Testing“, you usually mean ,,Test Execution®

* The visible activity of:
1. mechanically executing

2. observing & fetching results
3. evaluating them vs. Test Oracle

* Testing could be

— Manual: Instructions-as-a-Doc for human
— Automated: Instructions-as-a-Code for CPU

 Crucial importance

— Anything mechanical could be automated

9 | Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. -\ BROADCOM

,, 1est Design™** Is where these Test Instructions come from

» ,Testing” only as good as Test Instructions, which are only as good as Test Design

 Test Design effort thus determines:
— Testing quality
— Test coverage
— Number and probability of defects caught
— Real-world, customer-facing reliability of the product

,1esting” (test execution) is just a mechanical implementation of Test Design

Why is this important?
— Decoupling test design from execution (and automation) enables workload split

Test Execution

Test Design Test Automation

P S

© BROADCOM

10 | Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

50% defects are data-driven, not code-driven

Old IBM statistic

Let's have simplest program.
— Divide input 1 by input 2

— 2 branches: if both inputs non-zero or else

It's easy to achieve 100% ,coverage”:

float[,] testTriplets = new float][,]

1
//dividend operand, divisor operand, expected result
{1.ef, 1.0f, 1.0f} //code path 1
,10.0f, 9, float.NaN} //code path 2

b

Just these 2 test cases provide
— 100% code coverage

— 100% path coverage

— 100% automation

| Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

« Too good to be real? Because it isn't
 There are 2 classes of SW defects:

1) Because what was in the code was wrong

2) Because something wasn't in the code

* We need tests trying something missing
from the code — handling of:

;{l1e.0f, 2.5f, 4} //larger div smaller

,{10.0f, -5.0f, -2.0f} //negative divisor

;{1.5e-45F, 1, 1.5e-45f} //BVT min pass

,{1f, 1.5e-45f, float.PositiveInfinity} //BVT 1l:min

,{1, 3.4e38f, 2.941177e-39f}//BVT 1:max

,{0.0f, -0, float.NaN} //BVT negative zero
;{float.PositiveInfinity, float.PositiveInfinity, float.NaN}
,{1.0f, 3.0f, ©.3333333333333333333333f} //periodic
»{4195835.0f, 3145727.0f,

1.3338204491362410025f} //Pentium FDIV bug

© BROADCOM

Code Coverage vs. Path Coverage vs. Test Coverage

- EXxecute each statement « Execute all flow paths * Try every possibility

number = nugber * number; number = number * number;

Console.Writeline("Number is now: "+ Console.WritelLine("Number is

number’ ;

- . 2 . BC
number ; T

s duiingreid

while(number > 18%;

Ar

while(number > 18};

ole.Writeline{"End of processing

Results X 50L IL

= a number:

Results & S0L TEE e E A SOL 1L
entered:

a number:

« FormatbException
Input string was not in a correct format.

——— Theoretical Assured Quality

© BROADCOM

12 | Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

Testing metrics surprise!

* You've just seen hands-on that:

— Code coverage is weakest of metrics — cannot discover even defects in loops/cycles
— Path coverage more capable, but still very narrow-focused
— Because by design, nor CC nor PC can detect the 50% of data-driven defects

* Then why everyone loves Code?
— Because it's easy to measure and report via automated tools

* Does that mean that Code Coverage is useless? No... if you know the limitations

— CC is a bad overall target, but very good checkpoint =» no code function was missed
— CC is a must, but not enough — data-driven testing needs to build on top of it

13 | Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. - BROADCOM

Even worse: 100% coverage Is practically impossible

100% Code coverage cannot be achieved when code can‘t be reached by tests

— Eg. Dead code, backend logic without API — or conditions impossible to artificially emulate

— Code coverage > 90% typically is achievable (not always!), represents solid rock bottom

— Code coverage measurement issue: few tools support Code Coverage of system/integ QA tests

* 100% numerically and computationally impossible
— Unlike linear Code coverage, Path coverage grows exponentially to conditions, loops, branches
— Code with just 70 ,IF* statements = 2”° = 1,2 sextillion paths (~grains of sand on Earth)
— Brute-force ,all with all“ testing of code with 70 ,IF“ statements = 10" years (6000x age of Earth)

100% Test coverage — unreachable, untangible theoretical ideal
— Testing every possibility? How do you enumerate, find, measure ,all possibilities?

— Valuable insight: testing must go beyond just code, beyond just paths: user inputs, ENV
conditions, host system influence, output correctness, displaying data, error messages...
— =» instead of impossible Theoretical Test Coverage, we measure Practical Test Coverages as:
— Percentage of Theoretical Test Coverage categories/concerns covered by Test Analysis

— Percentage of Test Case Designs implemented into executable tests (eg. Automated)
© BROADCOM

14 | Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

15 | Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

Practical Test coverage: The Basic 12 Aspects

* If ,Test every possibility® _ _ .
. : Correct negative Failure Mode Consistency of
IS Impossible... function Effect processing

* You can get close by
,1esting every aspect”

User inputs Encoding/special Output display
 How to do that? sundary values handling char handling correctness

1. Cover all aspects
2. Expand each to many

test designs Data structures /0 handlin
: g and Atypical activit Atypical objects
3. Implement designs to handling safety & ‘ o J
Test Cases
« ,Basic testing” only
l Atypical system Host system Data corruption
covers the 1st aspect: states/workflow influence GUI, help, doc (Fuzz/FIT)

— Low test coverage
regardless of other metrics

© BROADCOM

Lessons learned: Misleading testing lingo

 Testing is only as good as Test Design/Analysis
— Which is only as good as the test aspects it considers

* Critically important is testing of data aside of code — user inputs, data corruption...
— Because even hypothetical 100% testing of code correctness covers just 50% of defects

« Code Coverage is not a magic bulet, nor the golden prize. It's auxiliary checkpoint

* The real ,magic bullet” would be Test Coverage... Which is however impossible
— Also, cannot be measured in any practical way

 But you could get close to Test Coverage by testing all aspects

— Of product design: using Function List
— Of generic lists/lessons learned: Test Classes Cheat Sheet

 Test Design, Implementation and Execution/Testing can be logically separated
— Eg. QA designs test scenarios, DEV scripts them to automated tests, QA runs+evaluates tests

© BROADCOM

16 | Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

Each Testing Workflow phase
Has it‘s own metric

£ BROADCOM

All the testing workflow, data and metrics explained

Test
scenarios

Aspects
Feature, Technical

Function, Risk/Test
Influence lists Analysis

(TCCS, FHA FnlList)

e Test Classes

Coverage % Test Expansion

» Function
Coverage %

+ FMECA

* Risk mgmt w/ PO/PM/FM
» Design mitigation w/ DEV
* Risk mitigation QC testing

— Testing is only as good as the Test Cases it executes

Ratio

Test Design

Designs

Test
Implementation

Test

Implementation
Coverage %

Test Automation %

Cases

Results

Test Execution
(,testing®)

Test Pass/Fail
%

* Code Coverage %

— Test Cases are only as good as the Test Designs they implement
— Test Designs are only as thorough as the Test Scenarios they subject the product to

— Test Scenarios only cover the fractions of quality which the Test Aspects Coverage considers
— Test Aspects Coverage is only as complete as much the input Lists cover what could happen

18 | Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

Results
verification

(Add to
Regression
Suite)

Feature test
coverage %

Catch:

Superbly profficient,
experienced QC's can do
all this as ,background
process” in their heads...
To an extent

© BROADCOM

Cheating the metrics: Goodhart's law and how to prevent it

* \When a measure becomes a target, it ceases to be a good measure”
— People try to satisfy/improve the Target at the expense of other, yet equally important aspects

« Gaming the metrics (at the detriment of overall Test Coverage):

— Increase Test Automation percentage:

— Create less Test Designs = lower the number of Test Cases to automate (--all other metrics)
— Increase Test implementation Coverage:
— Retain all| _ ™St but automate just a fraction (--Test Automation)

Designs _) : . . :
— Decrease the Egpansmn ratio =» create less Test Desigs to implement (--Expansion ratio)

— Increase Test Expansion ratio:
— Cover less | _'est =» less --Test Scenarios to be expanded with more ++Test Designs each

Aspects } . ..
— Ignore some --Test Aspects as well as --Test Scenarios =» copypaste many minor variations of ++Test

Designs (eg. Parameter values only) of the few remaining Test Scenarios
— Increase Test Aspects coverage:
— Don‘t create F”Ei‘;ttion = some --Test Aspects ,invisible® without trace = --Test Aspects to implement
— Formally create a Function list, but skip/ignore some Pre-req or Support functions = --Test Aspects
— Don‘tuse | _Test / falsely flag some Test Classes as ,N/A" = --Test Aspects to implement

Classes
9 BROADCOM

19 | Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

Only balanced metering doesn‘t incentivize bad quality

» Code Coverage is an objective measurement, but only ~5-40 % of Test Coverage!
— 100% Functional coverage must trigger 100% Code coverage... But not the other way around!

« Test Coverage (=testing quality) is determind by 5 separate metrics...
« Of which each can be increased at the expense of others = guality!

— If only one metric is selected, just that happens — Goodhart's law Test
Automation %
* The test metrics only work when used all together A
— Instantly unmasking any ,increase at the expense /////: j:i}f‘:fi;:‘\\\
of decrease elsewhere* L T NN Test
— Showing which aspect of quality is most lacking Coverage % $ (¢ Q\T‘;j}"‘”{f{'}ffg"égﬁ”

.............................

..............................
.................................
..................

.............. S A
L R T TR T T T T A A
.........................
''''''''''''''''''''
................................
....................

Test Classes\: fTest Expansion
Coverage % vs. Baseline %

© BROADCOM

20 | Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

Sorry, there‘s even more to metrics

* The 5-axis Spider Graph just covers technical quality

 But then there are

— Team'’s QA capacity
(just 1x QA engineer cannot ever come close to 100% on all axis — not even 50%)
— Automation difficulty

(it's easy and quick to automate with APIs provided for all Test Design needs — product, host
system and IO —, but hard and very slow without)

— Computational power
(if it takes 12 hours to run the automated tests, the debugging will take ages)

* So it's really 3-dimensional: oTSIE

— é&pﬁ_ﬁftyﬁﬂ

est Expansicon

Cowve rame 96 m It wes. Bas=linese 2%

21 | Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. - BROADCOM

Frarmcticarmal
e L — = = — T

— Irmplocormomnttaticom
Cowe T o e SR

Test Classae s

Lessons learned: Testing metrics

« Each phase of Testing Workflow yields it's own metric
* Neglecting any phase of Testing Workflow decreases overall Test Coverage

* |f you focus on any single metric, it will ,improve” single Test Workflow phase
at the expense of others =» test coverage will decrease

 Testing metrics are %2 of equation — the other is QA capacity

* QA cannot focus just on testing and automation — huge overhead on maintenance
of automation, infrastructure, orchestration...

© BROADCOM

22 | Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

Informal vs. Systematic quality

£ BROADCOM

Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

QA reviews: informal to systematic

 Classical code review:
— Another DEV reads the code:

Console.WriteLine("Enter a number:");

string userInput = Console.ReadlLine();

Console.WriteLine("You've entered: ""+

userInput+”"");

int number = Convert.ToInt32(userInput);

— And provides feedback:

— ,Friend, this is dangerous code, because
non-numeric inputs will crash it.
Use this function instead:”

Int32.TryParse({userInput, out number);

24 | Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

* Preliminary Hazard Analysis
— Origins in Aerospace
— Assures top quality while lowering costs
— Fancy name for:

1.
2.

3.
4.

5.

Identifying all feature’s intended functions

|dentifying what could go wrong and how bad
would it be (FMECA)

Using this to improve test coverage, AND

Suggesting feedback to Code/Architecture
design

So the feature is ,armored” against the bad
problems

— ,Code review of design and risks — before
coding begins”

Could be part of Architecture review, if
Architects knew FMECA and Function Lists

But usually only senior QA/RAMS do this
© BROADCOM

Input Lists, part 1: Test Classes

1. Puositive tests
a. Smoke tests [bare minimum required for even attempting more tests)
b. Inputs that should be included in output successfully

» Test Classes are: 5 Comtoncy o proveenang RO

2. MNegative tests
a. Dataffunctional (against false positives, false nagatives)

. . g LOglca"y Organized W|th b. Error and exception handling
hierarchical increasing precision i

3. Equivalence class-based tests
a. Al boundary values (including just above, below, and on each limit)
i. Freeform input value lmits
il Internal thresholds handling
b. Proccessing pre-defined switches/options
4. Input tests
a. User input sanitization handling
b. Character conversion sanitization handling
c. Internal data definitions handling
d. External inputs handling [object names, object lists)
5. Output tests
a. Actual SW payload (correctness tested in TC 1/2/3, here focus on formatting, paging ete.)
B. Messages and codes shown to the user
c. Correct filefdataset handling (allocation, de-allocation, file/F5 consistency, etc.)
Te St d. Databases interaction (not only payloed, but also logging, saving timestamps etc.)
6. Advanced or atypical circumstances

teSt aSpeCt 3 ggéljetlc?g‘ t&;?%rg\?esr:éles't a” Cove ra e a. Mdvancedfatyplcal activity handling tests [, expect insane user” tests)
H H b. Advamcedfatypical objects handling tests
ConSIderatlonS g i. (eg. DE table’s associated Archive/Clone/History table, exotic XML of containers)
c. Advancedfatypical system states handling tests
i. abrupt or Incorrect system termination (forced shutdown, power outages, ete)
il once-in-a-nevermind scenarbos (leap year, 2K log rotation, DST changes, ete)

» They cover all 12 basic aspects to be 7. Fesrsmplementaion pecic s

a. Compliance to government regulations [EU Directives/Regulations; US FCC, U.5.C.; etc)

tested.. And even more via sub-classes et b sttes o eienance (g 08 REORGA £ g)
8. User front-end testing
a. GUItests

« Generic list to start with —9 e A S e o s

a. Interfaces to internal features and systems
b. Interfaces to external services and systems

« Expanded to catch product-specifics ¢ ittt s s s

10. Performance testing

» A complete enumeration

_ » Generic, pre-existing
ol elf=mlEilalzle i reference what exactly to test

© BROADCOM

25 | Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

Input Lists, part 2: Function Lists

« Every software consists of: e @Ance upon a time, all was pre-planned in:
. — Functional Specifications
Primary

functions — Detailed Design Specifications
What the

customer wanted « Exhaustive doc = didn't survive Agile

Pre-requisite functions (More of these) o = Dark anes of ad-hoc improvization
s ogeraUsen Yol — ,just start hacking code and add stuff later
when you realize you need it*

— =» |lots of refactoring, glueing together, last-

Technical Support (Even more minute changes =» gaps, bugs, dead code
functions TSFs)

/0, connectivity, encryption, — ,,jUSt test somehow" — not knowing what!

sort algorithms...

first create an account

* Introducing Function lists:
* Customer/PO should know the 1stlevel _ pey and oA architect and identify

« Dev team must figure out the rest — all levels of functions
— up-front but lean =» TDD, FnList as Test
Aspects input list

26 | Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

© BROADCOM

Simplified FMECA | Fraphase |

- Method for discovering functional risks
* Allows risk-based testing without wild guesses

» Simplified FMEA cuts to the bones:

1. For every function in Function list,
2. ldentify how it could falil
3. Identify how severe would such fail be (using helpful SAE J-1739 10-point scale)

Fn Failure mode Failure effect Sev
1.1 | Failure to correctly separate parameter from value Transferred dataset | 8
not encrypted with
PE

Failure to read and pass the entire value correctly

Failure to process the parameter (i.e. ignoring or rejecting it)

Failure to handle atypical yet allowed keylabel (e.g. "*KEY.")

Failure to capitalize lowercase keylabel

Keylabel not shown although coded Confusion and g
13 confidence loss
Keylabel shown although not coded False_ assurance — .
securty 1ssue

© BROADCOM'

27 | Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

QA as arare resource

Every hour of QA time translates to defect prevented — or escaped

Any QA activity needs to be weighted based on Return of Investment:
— How many defects would it prevent / allow to escape

Most efficient: automated Feature Functional/Regression test case suite
— Prevents dozens to hundreds of defects = customer cases when good Test Coverage

Last efficient: single defect testing
— Prevents re-occurence of a single defect

Mid-way efficient: manual testing against Regression
— To prevent so many defects, it would take months (took 3 months to 5 QAs in ACF2)

Hence, top priority should be increasing automated Regression testing coverage
— Because that tests the features, the product, and the defect fixes, freeing-up QA's hands

But even bigger priority is covering new features with exhaustive Functional tests

— Because not only it creates Regression test suite, but decreases defects Nr. in the new feature
© BROADCOM

28 | Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

Test Automation caveats and planning

£ BROADCOM

Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

Avoid the ,,tip of the iceberg fallacy*
« Automation is Step Ne4, you need to start with Step Ne1

Setup QA Set test data Setup test Af(tj%rgl?te Orchestrate Gather+Eval Maintain
infra source Framework P Tgs execution results automation

- Before you can start with automating test cases, you need:
1. QA infra—the servers, libraries, deployment to run on
2. Test data source —a SW repository of future automated test case's data
3. Test Framework — tools, scripts and APIs to enable test automation

« Automation means
1. Fetch test data — test definitions/inputs, standalone from automation Framework
2. Execute — run the tested program with the test data as input
3. Fetch, parse and evaluate Actual results, copare to Expected results

- When you automate, you must also
1. Debug — test automation is coding/swdev of it's own, has it's own bugs
2. Orchestrate — incorporate the new automated TC in Jenkins or other scheduler
3. Maintain the automated tests over time (match product changes, Api changes...)

© BROADCOM

31 | Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

Automation IS a serious endeavor

 Selecting your Test Automation is akin selecting Corporate Enterprise Backend!
— There will be 1000x more effort on the data in the system than on the system

— =» The testing data will be 1000x more valuable than the testing framework
(Without the testing data, you have no regression test coverage, would take years to rebuild)

— =» Effectively ,Vendor lock-in“: if you cannot easily port your Test Data
to a different Test Framework... You‘re stuck with it forever! If the Framework goes EOS..®

— But what if the Test Framework doesn‘t support Automation of something your Test Case Design
calls for?

— A deadlock: you cannot change the Framework (as it would mean losing all the test data — Regressions)
— But you cannot implement the test, if the Framework doesn‘t support what you need
— Lose-lose scenario

= The Rules of Test Automation:
1. Each test case automated = investment deepening Vendor-lock in the Framework it uses
2. You shall not start Test Auto without serious planning and selection of the Test Framework...
3. So that you're certain it will 1) be supported, 2) support all your testing needs for years to come!

© BROADCOM

32 | Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

Test data # Test automation

 As with testing: the ,visible” automation just implements something

* That something are Test Data definitions

— the input values, flow of steps to be executed,
expected results, host OS interaction...

« Test Automation doesn‘t start with the tool.
It starts with Test Data Format =
— What are all the things your test cases want to do? oi"

* When you know what your tests will need to do
— Even in future — will new Product features require special testing capabilities?

« Then you can select THE automation framework which supports all the test needs
« And which will be licensed; supported; new team members can learn it; etc.
* |deally separate test data from test automation tool (HP ALM warning example)

33 | Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. -\ BROADCOM

Lessons learned: Test automation caveats

* Don't skip the foundations, preparations and planning - it will backfire

» Test Automation is investment & undertaking for many years to come
— So respect the ramifications and plan accordingly

* Any test automation =» future maintenance overhead
— Plan accordingly so that you can afford it!

« Test Framework matters. No size fits all. Select a test framework which:
— Will provide API for any automation scenario the team/product will need
— WIill support future growth
— Is resilient to tested product changes (tests not completely broken eg. by moving button)
— Has assured future licensing or support (open source with huge community, core enterprise app)
— Can be used by team members easily
— Separates test data from test automation code, avoids vendor lock-in

- Before automation can start, you need QA infra (servers, VMs, datasources etc.)

© BROADCOM

34 | Broadcom Proprietary and Confidential. Copyright © 2022 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

